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Abstract—The advent of secure public blockchains through
Bitcoin and later Ethereum, has brought forth a notable degree
of interest and capital influx, providing the premise for a
global wave of permissionless innovation. Despite lofty promises,
creating a decentralized, secure and scalable public blockchain
has proved to be a strenuous task.

This paper proposes MultiversX, a novel architecture which
goes beyond state of the art by introducing a genuine state
sharding scheme for practical scalability, eliminating energy
and computational waste while ensuring distributed fairness
through a Secure Proof of Stake (SPoS) consensus. Having a
strong focus on security, MultiversX’ network is built to ensure
resistance to known security problems like Sybil attack, Nothing
at Stake attack and others. In an ecosystem that strives for
interconnectivity, our solution for smart contracts offers an EVM
compliant engine to ensure interoperability by design.

Preliminary simulations and testnet results reflect that Mul-
tiversX exceeds Visa’s average throughput and achieves an im-
provement beyond three orders of magnitude or 1000x compared
to the existing viable approaches, while drastically reducing
the costs of bootstrapping and storage to ensure long term
sustainability.

I Introduction

1 General aspects

Cryptocurrency and smart contract platforms such as Bit-

coin and Ethereum have sparked considerable interest and

have become promising solutions for electronic payments,

decentralized applications and potential digital stores of value.

However, when compared to their centralized counterparts

in key metrics [1], the current state of affairs suggests that

present public blockchain iterations exhibit severe limitations,

particularly with respect to scalability, hindering their main-

stream adoption and delaying public use. In fact, it has

proved extremely challenging to deal with the current engi-

neering boundaries imposed by the trade-offs in the blockchain

trilemma paradigm [2]. Several solutions have been proposed,

but few of them have shown significant and viable results.

Thus, in order to solve the scalability problem, a complete

rethinking of public blockchain infrastructures was required.

2 Defining the challenges

Several challenges must be addressed properly in the pro-

cess of creating an innovative public blockchain solution

designed to scale:

• Full decentralization - Eliminating the need for any

trusted third party, hence removing any single point of

failure;

• Robust security - Allowing secure transactions and

preventing any attacks based on known attack vectors;

• High scalability - Enabling the network to achieve a

performance at least equal to the centralized counterpart,

as measured in TPS;

• Efficiency - Performing all network services with mini-

mal energy and computational requirements;

• Bootstrapping and storage enhancement - Ensuring a

competitive cost for data storage and synchronization;

• Cross-chain interoperability - Enforced by design, per-

mitting unlimited communication with external services.

Starting from the above challenges, we’ve created Multi-

versX as a complete rethinking of public blockchain infras-

tructure, specifically designed to be secure, efficient, scalable

and interoperable. MultiversX’ main contribution rests on two

cornerstone building blocks:

1) A genuine State Sharding approach: effectively parti-

tioning the blockchain and account state into multiple

shards, handled in parallel by different participating

validators;

2) Secure Proof of Stake consensus mechanism: an

improved variation of Proof of Stake (PoS) that ensures

long term security and distributed fairness, while elimi-

nating the need for energy intensive PoW algorithms.

3 Adaptive State Sharding

MultiversX proposes a dynamically adaptive sharding mech-

anism that enables shard computation and reorganizing based

on necessity and the number of active network nodes. The

reassignment of nodes in the shards at the beginning of

each epoch is progressive and nondeterministic, inducing no

temporary liveness penalties. Adaptive state sharding comes

with additional challenges compared to the static model. One

of the key-points resides in how shard-splitting and shard-

merging is done to prevent overall latency penalties introduced

by the synchronization/communication needs when the shard

number changes. Latency, in this case, is the communication

overhead required by nodes, in order to retrieve the new state,

once their shard address space assignment has been modified.
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MultiversX proposes a solution for this problem below,

but first some notions have to be defined: users and nodes.

Users are external actors and can be identified by an unique

account address; nodes are computers/devices in the Multi-

versX network that run our protocol. Notions like users, nodes,

addresses will be further described in chapter II.1 - Entities.

MultiversX solves this challenge by:

1) Dividing the account address space in shards, using a

binary tree which can be built with the sole requirement

of knowing the exact number of shards in a certain

epoch. Using this method, the accumulated latency is

reduced and the network liveness is improved in two

ways. First, thanks to the designed model, the dividing of

the account address space is predetermined by hierarchy.

Hence, there is no split overhead, meaning that one

shard breaks into two shards, each of them keeping

only one half of the previous address space in addition

to the associated state. Second, the latency is reduced

through the state redundancy mechanism, as the merge

is prepared by retaining the state in the sibling nodes.

2) Introducing a technique of balancing the nodes in each

shard, to achieve overall architecture equilibrium. This

technique ensures a balanced workload and reward for

each node in the network.

3) Designing a built-in mechanism for automatic transac-

tion routing in the corresponding shards, considerably

reduces latency as a result. The routing algorithm is de-

scribed in chapter IV.4 - MultiversX sharding approach.

4) In order to achieve considerable improvements with

respect to bootstrapping and storage, MultiversX makes

use of a shard pruning mechanism. This ensures sus-

tainability of our architecture even with a throughput of

tens of thousands of transactions per second (TPS).

4 Secure Proof of Stake (SPoS)

We introduce a Secure Proof of Stake consensus mecha-

nism, that expands on Algorand’s [3] idea of a random se-

lection mechanism, differentiating itself through the following

aspects:

1) MultiversX introduces an improvement which reduces

the latency allowing each node in the shard to determine

the members of the consensus group (block proposer and

validators) at the beginning of a round. This is possible

because the randomization factor r is stored in every

block and is created by the block proposer using a BLS

signature [4] on the previous r.

2) The block proposer is the validator in the consensus

group who’s hash of the public key and randomization

factor is the smallest. In contrast to Algorand’s [3] ap-

proach, where the random committee selection can take

up to 12 seconds, in MultiversX the time necessary for

random selection of the consensus group is considerably

reduced (estimated under 100 ms) excluding network

latency. Indeed, there is no communication requirement

for this random selection process, which enables Mul-

tiversX to have a newly and randomly selected group

that succeeds in committing a new block to the ledger

in each round. The tradeoff for this enhancement relies

on the premise that an adversary cannot adapt faster than

the round’s time frame and can choose not to propose

the block. A further improvement on the security of the

randomness source, would be the use of verifiable delay

functions (VDFs) in order to prevent any tampering

possibilities of the randomness source until it is too

late. Currently, the research in VDFs is still ongoing

- there only a few working (and poorly tested) VDF

implementations.

3) In addition to the stake factor generally used in PoS

architectures as a sole decision input, MultiversX refines

its consensus mechanism by adding an additional weight

factor called rating. The node’s probability to be selected

in the consensus group takes into consideration both

stake and rating. The rating of a block proposer is recal-

culated at the end of each epoch, except in cases where

slashing should occur, when the actual rating decrease

is done instantly, adding another layer of security by

promoting meritocracy.

4) A modified BLS multisignature scheme [5] with 2

communication rounds is used by the consensus group

for block signing

5) MultiversX considers formal verification for the critical

protocol implementations (e.g. SPoS consensus mecha-

nism) in order to validate the correctness of our algo-

rithms.

II Architecture Overview

1 Entities

There are two main entities in MultiversX: users and nodes.

Users, each holding a (finite) number of public / private

(Pk/sk) key pairs (e.g. in one or multiple wallet apps), use the

MultiversX network to deploy signed transactions for value

transfers or smart contracts’ execution. They can be identified

by one of their account addresses (derived from the public

key). The nodes are represented by the devices that form the

MultiversX network and can be passive or actively engaged

in processing tasks. Eligible validators are active participants

in MultiversX’ network. Specifically, they are responsible for

running consensus, adding blocks, maintaining the state and

being rewarded for their contribution. Each eligible validator

can be uniquely identified by a public key constructed through

Fig. 1: Relations between MultiversX entities
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a derivation of the address that staked the necessary amount

and the node id. Relations between entities in the MultiversX

protocol are shown in Fig. 1.

Furthermore, the network is divided into smaller units called

shards. An eligible validator is assigned to a shard based on

an algorithm that keeps the nodes evenly distributed across

shards, depending on the tree level. Each shard contains a

randomly selected consensus group. Any block proposer is

responsible to aggregate transactions into a new block. The

validators are responsible to either reject, or approve the

proposed block, thereby validating it and committing it to the

blockchain.

2 Intrinsic token

MultiversX grants access to the usage of its network through

intrinsic utility token called eGold, in short EGLD. All

costs for processing transactions, running smart contracts and

rewards for various contributions to the network will be paid in

EGLD. References to fees, payments or balances are assumed

to be in EGLD.

3 Threat model

MultiversX assumes a byzantine adversarial model, where

at least 2

3
n+1 of the eligible nodes in a shard are honest. The

protocol permits the existence of adversaries that have stake or

good rating, delay or send conflicting messages, compromise

other nodes, have bugs or collude among themselves, but as

long as 2

3
n+1 of the eligible validators in a shard are honest/not

compromised, the protocol can achieve consensus.

The protocol assumes highly adaptive adversaries, which

however cannot adapt faster than a round’s timeframe. The

computational power of an adversary is bounded, therefore

the cryptographic assumptions granted by the security level of

the chosen primitives hold firmly within the complexity class

of problems solvable by a Turing machine in polynomial time.

The network of honest nodes is assumed to form a well

connected graph and the propagation of their messages is done

in a bounded time ∆.

Attack vectors’ prevention

1) Sybil attacks: mitigated through the stake locking when

joining the network. This way the generation of new

identities has a cost equal to the minimum stake;

2) Nothing at stake: removed through the need of multiple

signatures, not just from proposer, and the stake slashing.

The reward per block compared to the stake locked will

discourage such behavior;

3) Long range attacks: mitigated by our pruning mech-

anism, the use of a randomly selected consensus group

every round (and not just a single proposer) and stake

locking. On top of all these, our pBFT consensus algo-

rithm ensures finality;

4) DDoS attacks: the consensus group is randomly sam-

pled every round (few seconds); the small time frame

making DDoS almost impossible.

Other attack vectors we have taken into consideration are:

shard takeover attack, transaction censorship, double spend,

bribery attacks, etc.

4 Chronology

In MultiversX’ network, the timeline is split into epochs and

rounds. The epochs have a fixed duration, set to one day (can

be modified as the architecture evolves), at the end of which

the shards reorganization and pruning is triggered. The epochs

are further divided into rounds, lasting for a fixed timeframe.

A new consensus group is randomly selected per shard in each

round, that can commit a maximum of one block in the shard’s

ledger.

New validators can join the network by locking their stake,

as presented in chapter V.2 - Secure Proof of Stake. They are

added to the unassigned node pool in the current epoch e, are

assigned to the waiting list of a shard at the beginning of epoch

e + 1, but can only become eligible validators to participate

in consensus and get rewarded in the next epoch e+ 2.

The timeline aspects are further detailed in section IX.1.

III Related Work

MultiversX was designed upon and inspired by the ideas

from Ethereum [6], Omniledger [7], Zilliqa [8], Algorand [3]

and ChainSpace [9]. Our architecture goes beyond state of

the art and can be seen as an augmentation of the existing

models, improving the performance while focusing to achieve

a better nash equilibrium state between security, scalability

and decentralization.

1 Ethereum

Much of Ethereum’s [6] success can be attributed to the

introduction of its decentralized applications layer through

EVM [10], Solidity [11] and Web3j [12]. While Dapps have

been one of the core features of ethereum, scalability has

proved a pressing limitation. Considerable research has been

put into solving this problem, however results have been

negligible up to this point. Still, few promising improvements

are being proposed: Casper [13] prepares an update that will

replace the current Proof of Work (PoW) consensus with a

Proof of Stake (PoS), while Plasma based side-chains and

sharding are expected to become available in the near future,

alleviating Ethereum’s scalability problem at least partially

[14].

Compared to Ethereum, MultiversX eliminates both energy

and computational waste from PoW algorithms by imple-

menting a SPoS consensus while using transaction processing

parallelism through sharding.

2 Omniledger

Omniledger [7] proposes a novel scale-out distributed ledger

that preserves long term security under permission-less op-

eration. It ensures security and correctness by using a bias-

resistant public-randomness protocol for choosing large, statis-

tically representative shards that process transactions. To com-

mit transactions atomically across shards, Omniledger intro-

duces Atomix, an efficient cross-shard commit protocol. The

concept is a two-phase client-driven ”lock/unlock” protocol

that ensures that nodes can either fully commit a transaction

across shards, or obtain ”rejection proofs” to abort and unlock
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the state affected by partially completed transactions. Om-

niledger also optimizes performance via parallel intra-shard

transaction processing, ledger pruning via collectively-signed

state blocks, and low-latency ”trust-but-verify” validation for

low-value transactions. The consensus used in Omniledger is a

BFT variation, named ByzCoinX, that increases performance

and robustness against DoS attacks.

Compared to Omniledger, MultiversX has an adaptive ap-

proach on state sharding, a faster random selection of the

consensus group and an improved security by replacing the

validators’ set after every round (a few seconds) not after every

epoch (1 day).

3 Zilliqa

Zilliqa [8] is the first transaction-sharding architecture that

allows the mining network to process transactions in parallel

and reach a high throughput by dividing the mining network

into shards. Specifically, its design allows a higher transaction

rate as more nodes are joining the network. The key is

to ensure that shards process different transactions, with no

overlaps and therefore no double-spending. Zilliqa uses pBFT

[15] for consensus and PoW to establish identities and prevent

Sybil attacks.

Compared to Zilliqa, MultiversX pushes the limits of shard-

ing by using not only transaction sharding but also state shard-

ing. MultiversX completely eliminates the PoW mechanism

and uses SPoS for consensus. Both architectures are building

their own smart contract engine, but MultiversX aims not

only for EVM compliance, so that SC written for Ethereum

will run seamlessly on our VM, but also aims to achieve

interoperability between blockchains.

4 Algorand

Algorand [3] proposes a public ledger that keeps the con-

venience and efficiency of centralized systems, without the

inefficiencies and weaknesses of current decentralized imple-

mentations. The leader and the set of verifiers are randomly

chosen, based on their signature applied to the last block’s

quantity value. The selections are immune to manipulations

and unpredictable until the last moment. The consensus relies

on a novel message-passing Byzantine Agreement that enables

the community and the protocol to evolve without hard forks.

Compared to Algorand, MultiversX doesn’t have a single

blockchain, instead it increases transaction’s throughput using

sharding. MultiversX also improves on Algorand’s idea of ran-

dom selection by reducing the selection time of the consensus

group from over 12 seconds to less than a second, but assumes

that the adversaries cannot adapt within a round.

5 Chainspace

Chainspace [9] is a distributed ledger platform for high

integrity and transparent processing of transactions. It uses

language agnostic and privacy-friendly smart contracts for

extensibility. The sharded architecture allows a linearly scal-

able transaction processing throughput using S-BAC, a novel

distributed atomic commit protocol that guarantees consistency

and offers high auditability. Privacy features are implemented

through modern zero knowledge techniques, while the consen-

sus is ensured by BFT.

Compared to Chainspace, where the TPS decreases with

each node added in a shard, MultiversX’ approach is not

influenced by the number of nodes in a shard, because the con-

sensus group has a fixed size. A strong point for Chainspace

is the approach for language agnostic smart contracts, while

MultiversX focuses on building an abstraction layer for EVM

compliance. Both projects use different approaches for state

sharding to enhance performance. However, MultiversX goes

a step further by anticipating the blockchain size problem in

high throughput architectures and uses an efficient pruning

mechanism. Moreover, MultiversX exhibits a higher resistance

to sudden changes in node population and malicious shard

takeover by introducing shard redundancy, a new feature for

sharded blockchains.

IV Scalability via Adaptive State Sharding

1 Why sharding

Sharding was first used in databases and is a method for dis-

tributing data across multiple machines. This scaling technique

can be used in blockchains to partition states and transaction

processing, so that each node would process only a fraction of

all transactions in parallel with other nodes. As long as there

is a sufficient number of nodes verifying each transaction so

that the system maintains high reliability and security, then

splitting a blockchain into shards will allow it to process many

transactions in parallel, and thus greatly improving transaction

throughput and efficiency. Sharding promises to increase the

throughput as the validator network expands, a property that

is referred to as horizontal scaling.

2 Sharding types

A comprehensive and thorough introduction [16] empha-

sizes the three main types of sharding: network sharding,

transaction sharding and state sharding. Network sharding

handles the way the nodes are grouped into shards and can

be used to optimize communication, as message propagation

inside a shard can be done much faster than propagation

to the entire network. This is the first challenge in every

sharding approach and the mechanism that maps nodes to

shards has to take into consideration the possible attacks from

an attacker that gains control over a specific shard. Transaction

sharding handles the way the transactions are mapped to the

shards where they will be processed. In an account-based

system, the transactions could be assigned to shards based on

the sender’s address. State sharding is the most challenging

approach. In contrast to the previously described sharding

mechanisms, where all nodes store the entire state, in state-

sharded blockchains, each shard maintains only a portion of

the state. Every transaction handling accounts that are in

different shards, would need to exchange messages and update

states in different shards. In order to increase resiliency to

malicious attacks, the nodes in the shards have to be reshuffled

from time to time. However, moving nodes between shards
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introduces synchronization overheads, that is, the time taken

for the newly added nodes to download the latest state. Thus,

it is imperative that only a subset of all nodes should be

redistributed during each epoch, to prevent down times during

the synchronization process.

3 Sharding directions

Some sharding proposals attempt to only shard transactions

[8] or only shard state [17], which increases transaction’s

throughput, either by forcing every node to store lots of state

data or to be a supercomputer [2]. Still, more recently, at

least one claim has been made about successfully performing

both transaction and state sharding, without compromising on

storage or processing power [13].

But sharding introduces some new challenges like: single-

shard takeover attack, cross-shard communication, data avail-

ability and the need of an abstraction layer that hides the

shards. However, conditional on the fact that the above

problems are addressed correctly, state sharding brings con-

siderable overall improvements: transaction throughput will

increase significantly due to parallel transaction processing

and transaction fees will be considerably reduced. Two main

criterias widely considered to be obstacles transforming into

advantages and incentives for mainstream adoption of the

blockchain technology.

4 MultiversX sharding approach

While dealing with the complexity of combining network,

transaction and state sharding, MultiversX’ approach was

designed with the following goals in mind:

1) Scalability without affecting availability: Increasing

or decreasing the number of shards should affect a

negligibly small vicinity of nodes without causing down-

times, or minimizing them while updating states;

2) Dispatching and instant traceability: Finding out the

destination shard of a transaction should be determinis-

tic, trivial to calculate, eliminating the need for commu-

nication rounds;

3) Efficiency and adaptability: The shards should be as

balanced as possible at any given time.

Method Description

To calculate an optimum number of shards Nsh in epoch

ei+1 (Nsh,i+1), we have defined one threshold coefficient

for the number of transactions in a block, θTX . Variable

optN represents the optimal number of nodes in a shard,

ϵsh is a positive number and represents the number of nodes

a shard can vary by. totalNi is the total number of nodes

(eligible validators, nodes in the waiting lists and newly added

nodes in the node pool) on all shards in epoch ei, while

NTXB,i is the average number of transactions in a block on

all shards in epoch ei. Nsh,0 will be considered as 1. The

total number of shards Nsh,i+1 will change if the number of

nodes totalNi in the network changes and if the blockchain

utilization needs it: if the number of nodes increases above a

threshold nSplit from one epoch to another and the average

number of transactions per block is greater than the threshold

number of transactions per block NTXB,i > θTX or if the

number of nodes decreases below a threshold nMerge as

shown in function ComputeShardsN .

1: function COMPUTESHARDSN(totalNi+1, Nsh,i)

2: nSplit← (Nsh,i + 1) ∗ (optN + ϵsh)
3: nMerge← (Nsh,i − 1) ∗ a
4: Nsh,i+1 ← Nsh,i

5: if (totalNi+1 > nSplit and NTXB,i > θTX ) then

6: Nsh,i+1 ← totalNi+1/(optN + ϵsh)
7: else if totalNi+1 < nMerge then

8: Nsh,i+1 ← totalNi+1/(optN)

9: return Nsh,i+1

From one epoch to another, there is a probability that the

number of active nodes changes. If this aspect influences the

number of shards, anyone can calculate the two masks m1 and

m2, used in transaction dispatching.

1: function COMPUTEM1ANDM2(Nsh)

2: n← math.ceil(log2Nsh)
3: m1 ← (1 << n)− 1
4: m2 ← (1 << (n− 1))− 1
5: return m1,m2

As the main goal is to increase the throughput beyond

thousands of transactions per second and to diminish the

cross-shard communication, MultiversX proposes a dispatch-

ing mechanism which determines automatically the shards

involved in the current transaction and routes the transaction

accordingly. The dispatcher will take into consideration the

account address (addr) of the transaction sender/receiver. The

result is the number of the shard (shard) the transaction will

be dispatched to.

1: function COMPUTESHARD(Nsh, addr,m1,m2)

2: shard← (addr and m1)

3: if shard > Nsh then

4: shard← (addr and m2)

5: return shard

The entire sharding scheme is based on a binary tree

structure that distributes the account addresses, favors the

scalability and deals with the state transitions. A representation

of the tree can be seen in Fig. 2.

The presented tree structure is merely a logical represen-

tation of the account address space used for a deterministic

mapping; e.g. shard allocation, sibling computation etc. The

leaves of the binary tree represent the shards with their ID

number. Starting from root (node/shard 0), if there is only one

shard/leaf (a), all account addresses are mapped to this one

and all transactions will be executed here. Further on, if the

formula for Nsh dictates the necessity of 2 shards (b), the

address space will be split in equal parts, according to the last

bits in the address.

Sometimes, the tree can also become unbalanced (c) if Nsh

is not a power of 2. This case only affects the leaves on the
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Fig. 2: Example of a sharding tree structure

last level. The structure will become balanced again when the

number of shards reaches a power of 2.

The unbalancing of the binary tree causes the shards located

in the lowest level to have half the address space of nodes

of a shard located one level higher, so it can be argued that

the active nodes allocated to these shards will have a lower

fee income - block rewards are not affected. However, this

problem is solved by having a third of each shard nodes

redistributed randomly each epoch (detailed in the Chronology

section) and having a balanced distribution of nodes according

to the tree level.

Looking at the tree, starting from any leaf and going

through branches towards the root, the encoding from branches

represents the last n bits of the account addresses that will

have their associated originating transactions processed by that

leaf/shard. Going the other way around, from root to leaf,

the information is related to the evolution of the structure,

sibling shards, the parent shard from where they split. Using

this hierarchy, the shard that will split when Nsh increases or

the shards that will merge when Nsh decreases can easily be

calculated. The entire state sharding mechanism benefits from

this structure by always keeping the address and the associated

state within the same shard.

Knowing Nsh, any node can follow the redistribution pro-

cess without the need of communication. The allocation of

ID’s for the new shards is incremental and reducing the

number of shards involves that the higher numbered shards

will be removed. For example, when going from Nsh to Nsh-

1, two shards will be merged, the shard to be removed is

the highest numbered shard (shmerge=Nsh-1). Finding the

shard number that shmerge will be merged with is trivial.

According to the tree structure, the resulting shard has the

sibling’s number:

1: function COMPUTESIBLING(shmerge, n)

2: sibling ← (shmerge xor (1 << (n− 1)))
3: return sibling

For shard redundancy, traceability of the state transitions

and fast scaling, it is important to determine the sibling and

parent of a generic shard with number p:

1: function COMPUTEPARENTSIBLINGS(n, p,Nsh)

2: mask1 ← 1 << (n− 1)
3: mask2 ← 1 << (n− 2)
4: sibling ← (p xor mask1)

5: parent← min(p, sibling)
6: if sibling ≥ Nsh then

7: sibling ← (p xor mask2)

8: sibling2 ← (sibling xor mask1)

9: parent← min(p, sibling)
10: if sibling2 ≥ Nsh then ▷ sibling is a shard
11: return parent, sibling,NULL
12: else

13: ▷ sibling is a subtree with
14: ▷ shards (sibling, sibling2)
15: return parent, sibling, sibling2
16: else ▷ sibling is a shard
17: return parent, sibling,NULL

Shard redundancy

On blockchain, state sharding is susceptible to shard failure

when there is an insufficient number of online nodes in a

shard or the distribution is localized geographically. In the

unlikely case when one shard fails (either the shard cannot

be contacted - all nodes are offline, or consensus cannot be

reached - more than 1

3
of nodes are not responding), there is

a high risk that the entire architecture relies only on super-

full nodes [2], which fully download every block of every

shard, fully verifying everything. As displayed in Fig. 3, our

protocol has a protection mechanism that introduces a tradeoff

in the state holding structure by enforcing the shards from

the last tree level to also hold the state from their siblings.

This mechanism reduces the communication and eliminates

the bootstrapping when sibling shards are merging since they

already have the data.

Context switching

To preserve security in sharded public blockchains, context

switching becomes crucial [7]. This refers to the realloca-

tion of the active nodes between shards on a fixed time

interval by some random criteria. In MultiversX’ approach,

the context switching represents a security improvement, but

also increases the complexity required to maintain consis-

tency between multiple states. The state transition has the
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Fig. 3: Shard redundancy across epochs

biggest footprint on performance since the movement of active

nodes requires to resync the state, blockchain and transactions

alongside the eligible nodes in the new shard. At the start of

each epoch, in order to maintain liveness, only less than 1

3

of these nodes will be uniformly re-distributed across shards.

This mechanism is highly effective against forming malicious

groups.

5 Notarization (Meta) chain

All network and global data operations (node joining the

network, node leaving the network, eligible validator lists

computation, nodes assignment to the shard’s waiting lists,

consensus agreement on a block in a specific shard challenges

for invalid blocks will be notarized in the metachain. The

metachain consensus is run by a different shard that com-

municates with all other shards and facilitates cross-shard

operations. Every round of every epoch, the metachain receives

block headers from the other shards and, if necessary, proofs

for the challenges of the invalid blocks. This information

will be aggregated into blocks on the metachain on which

consensus has to be run. Once the blocks are validated in

the consensus group, shards can request information about

blocks, miniblocks (see chapter VII), eligible validators, nodes

in waiting lists etc., in order to securely process cross-shard

transactions. Further details about the cross-shard transaction

execution, communication between shards and metachain will

be presented in Chapter VII Cross-shard transaction process-

ing.

V Consensus via Secure Proof of Stake

1 Consensus Analysis

The first blockchain consensus algorithm based on Proof

of Work (PoW), is used in Bitcoin, Ethereum and other

blockchain platforms. In Proof of Work each node is required

to solve a mathematical puzzle (hard to calculate but easy to

verify). And the first node that finishes the puzzle will collect

the reward [18]. Proof of Work mechanisms successfully

prevent double-spending, DDoS and Sybil attacks at the cost

of high energy consumption.

Proof of Stake (PoS) is a novel and more efficient con-

sensus mechanism proposed as an alternative to the intensive

energy and computational use in Proof of Work consensus

mechanisms. PoS can be found in many new architectures like

Cardano [19] and Algorand [3] or can be used in next version

of Ethereum. In PoS the node that proposes the next block

is selected by a combination of stake (wealth), randomness

and/or age. It mitigates the PoW energy problem but also puts

two important issues on the table: the Nothing at Stake attack

and a higher centralization risk.

Proof of Meme as envisioned in Constellation [20], is an

algorithm based on the node’s historical participation on the

network. Its behaviour is stored in a matrix of weights in the

blockchain and supports changes over time. Also, it allows

new nodes to gain trust by building up reputation. The main

drawback regarding Sybil attacks is alleviated through the

NetFlow algorithm.

Delegated Proof of Stake (DPoS) found in Bitshares [21],

Steemit [22] and EOS [23] is a hybrid between Proof of

Authority and Proof of Stake in which the few nodes respon-

sible for deploying new blocks are elected by stakeholders.

Although it has a high throughput, the model is susceptible to

human related social problems such as bribing and corruption.

Also, a small number of delegates makes the system prone to

DDoS attacks and centralization.

2 Secure Proof of Stake (SPoS)

MultiversX’s approach to consensus is made by combining

random validators’ selection, eligibility through stake and

rating, with an optimal dimension for the consensus group.

The algorithm is described in the steps below:

1) Each node ni is defined as a tuple of public key (Pk),

rating (default is 0) and the locked stake. If ni wishes

to participate in the consensus, it has to first register

through a smart contract, by sending a transaction that

contains an amount equal to the minimum required stake

and other information (Pks, a public key derived from

Pk and nodeid that will be used for the signing process

in order not to use a real wallet address).

2) The node ni joins the node pool and waits for the

shard assignment at the end of the current epoch e. The

shard assignment mechanism creates a new set of nodes

containing all the nodes that joined in epoch e and all
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the nodes that need to be reshuffled (less than 1

3
of

every shard). All nodes in this set will be reassigned

to the waiting lists of shards. Wj represents j’s shard

waiting list and Nsh represents the number of shards. A

node also has a secret key sk that by nature is not to be

made public.

ni = (Pki, ratingi, stakei)

ni ∈Wj , 0 ≤ j < Nsh

3) At the end of the epoch in which it has joined, the node

will be moved to the list of eligible nodes (Ej) of a

shard j, where e is the current epoch.

ni ∈Wj,e−1 → ni ̸∈Wj,e, ni ∈ Ej,e

4) Each node from the list Ej can be selected as part of an

optimally dimensioned consensus group (in terms of se-

curity and communication), by a deterministic function,

based on the randomness source added to the previous

block, the round r and a set of variation parameters.

The random number, known to all shard nodes through

gossip, cannot be predicted before the block is actually

signed by the previous consensus group. This property

makes it a good source of randomness and prevents

highly adaptive malicious attacks. We define a selection

function to return the set of chosen nodes (consensus

group) Nchosen with the first being the block proposer,

that takes following parameters: E, r and sigr−1 - the

previous block signature.

Nchosen = f(E, r, sigr−1), where Nchosen ⊂ E

5) The block will be created by the block proposer and the

validators will co-sign it based on a modified practical

Byzantine Fault Tolerance (pBFT).

6) If, for any reason, the block proposer did not create a

block during its allocated time slot (malicious, offline,

etc.), round r will be used together with the randomness

source from the last block to select a new consensus

group.

If the current block proposer acts in a malicious way, the rest

of the group members apply a negative feedback to change its

rating, decreasing or even cancelling out the chances that this

particular node will be selected again. The feedback function

for the block proposer (ni) in round number r, with parameter

ratingModifier ∈ Z is computed as:

feedbackfunction = ff(ni, ratingModifier, r)

When ratingModifier < 0, slashing occurs so the node

ni loses its stake.

The consensus protocol remains safe in the face of DDoS

attacks by having a high number of possible validators from

the list E (hundreds of nodes) and no way to predict the order

of the validators before they are selected.

To reduce the communication overhead that comes with an

increased number of shards, a consensus will be run on a

composite block. This composite block is formed by:

• Ledger block: the block to be added into the shard’s

ledger, having all intra shard transactions and cross shard

transactions for which confirmation proof was received;

• Multiple mini-blocks: each of them holding cross shard

transactions for a different shard;

The consensus will be run only once, on the composite

block containing both intra- and cross-shard transactions. After

consensus is reached, the block header of each shard is sent

to the metachain for notarization.

VI Cryptographic Layer

1 Signature Analysis

Digital signatures are cryptographic primitives used to

achieve information security by providing several properties

like message authentication, data integrity and non-repudiation

[24].

Most of the schemes used for existing blockchain platforms

rely on the discrete logarithm (DL) problem: one-way expo-

nentiation function y → αymod p. It is scientifically proven

that calculating the discrete logarithm with base is hard [25].

Elliptic curve cryptography (ECC) uses a cyclic group of

points instead of a cyclic group of integers. The scheme

reduces the computational effort, such that for key lengths

of only 160 - 256 bits, ECC provides same security level that

RSA, Elgamal, DSA and others provide for key lengths of

1024 - 3072 bits (see Table 1 [24]).

The reason why ECC provides a similar security level for

much smaller parameter lengths is because existing attacks on

elliptic curve groups are weaker than the existing integer DL

attacks, the complexity of such algorithms require on average√
p steps to solve. This means that an elliptic curve using a

prime p of 256 bit length provides on average a security of

2128 steps needed to break it [24].

Both Ethereum and Bitcoin use curve cryptography, with

the ECDSA signing algorithm. The security of the algorithm

is very dependent on the random number generator, because

if the generator does not produce a different number on each

query, the private key can be leaked [26].

Another digital signature scheme is EdDSA, a Schnorr

variant based on twisted Edwards curves that support fast

arithmetic [27]. In contrast to ECDSA, it is provably non-

malleable, meaning that starting from a simple signature, it

is impossible to find another set of parameters that defines

the same point on the elliptic curve [28], [29]. Additionally,

EdDSA doesn’t need a random number generator because it

Algorithm
Family

Crypto
systems

Security level (bit)

80 128 192 256
Integer

factorization
RSA 1024 3072 7680 15360

Discrete
logarithm

DH, DSA,
Elgamal

1024 3072 7680 15360

Elliptic
curves

ECDH,
ECDSA

160 256 384 512

Symmetric
key

AES,
3DES

80 128 192 256

TABLE 1: Bit lengths of public-key algorithms for different

security levels
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uses a nonce, calculated as the hash of the private key and

the message, so the attack vector of a broken random number

generator that can reveal the private key is avoided.

Schnorr signature variants are gaining more attention [8],

[30] due to a native multi-signature capability and being

provably secure in the random oracle model [31]. A multi-

signature scheme is a combination of a signing and verification

algorithms, where multiple signers, each with their own private

and public keys, can sign the same message, producing a single

signature [32], [33]. This signature can then be checked by

a verifier which has access to the message and the public

keys of the signers. A sub-optimal method would be to have

each node calculate his own signature and then concatenate

all results in a single string. However, such an approach is

unfeasible as the generated string size grows with the number

of signers. A practical solution would be to aggregate the

output into a single fixed size signature, independent of the

number of participants. There have been multiple proposals

of such schemes, most of them are susceptible to rogue-key

(cancellation) attacks. One solution for this problem would

be to introduce a step where each signer needs to prove

possession of the private key associated with its public key

[34].

Bellare and Neven [35] (BN) proposed a secure multi-

signature scheme without a proof of possession, in the plain

public key model, under the discrete logarithm assumption

[31]. The participants commit first to their share Ri by prop-

agating its hash to all other signers so they cannot calculate

a function of it. Each signer computes a different challenge

for their partial signature. However, this scheme sacrifices the

public key aggregation. In this case, the verification of the

aggregated signature, requires the public key from each signer.

A recent paper by Gregory Maxwell et al. [29] proposes

another multi-signature scheme in the plain public key model

[36], under the ’one more discrete logarithm’ assumption

(OMDL). This approach improves the previous scheme [35] by

reducing the communication rounds from 3 to 2, reintroducing

the key aggregation with a higher complexity cost.

BLS [4] is another interesting signature scheme, from the

Weil pairing, which bases its security on the Computational

Diffie-Hellman assumption on certain elliptic curves and gen-

erates short signatures. It has several useful properties like

batch verification, signature aggregation, public key aggrega-

tion, making BLS a good candidate for threshold and multi-

signature schemes.

Dan Boneh, Manu Drijvers and Gregory Neven recently

proposed a BLS multi-signature scheme [5], using ideas from

the previous work of [35], [30] to provide the scheme with

defenses against rogue key attacks. The scheme supports

efficient verification with only two pairings needed to verify

a multi-signature and without any proof of knowledge of the

secret key (works in the plain public key model). Another

advantage is that the multi-signature can be created in only

two communication rounds.

For traceability and security reasons, a consensus based

on a reduced set of validators requires the public key from

each signer. In this context, our analysis concludes that the

most appropriate multi-signature scheme for block signing in

MultiversX is BLS multi-signature [5], which is faster overall

than the other options due to only two communication rounds.

2 Block signing in MultiversX

For block signing, MultiversX uses curve cryptography

based on the BLS multi-signature scheme over the bn256
bilinear group, which implements the Optimal Ate pairing over

a 256-bit Barreto Naehrig curve. The bilinear pairing is defined

as:

e : g0 × g1 → gt (1)

where g0, g1 and gt are elliptic curves of prime order p defined

by bn256, and e is a bilinear map (i.e. pairing function). Let

G0 and G1 be generators for g0 and g1. Also, let H0 be a

hashing function that produces points on the curve g0:

H0 :M→ g0 (2)

where M is the set of all possible binary messages of any

length. The signing scheme used by MultiversX employs a

second hasing function as well, with parameters known by all

signers:

H1 :M→ Zp (3)

Each signer i has its own private/public key pair (ski, Pki),
where ski is randomly chosen from Zp. For each key pair, the

property Pki = ski ·G1 holds.

Let L = Pk1, Pk2, ..., Pkn be the set of public keys of

all possible signers during a specific round which, in the case

of MultiversX, is the set of public keys of all the nodes in

the consensus group. Below, the two stages of block signing

process is presented: signing and verification.

Practical signing - Round 1

The leader of the consensus group creates a block with

transactions, then signs and broadcasts this block to the

consensus group members.

Practical signing - Round 2

Each member of the consensus group (including the leader)

who receives the block must validate it, and if found valid, it

signs it with BLS and then sends the signature to the leader:

Sigi = ski ∗H0(m) (4)

where Sigi is a point on g0.

Practical signing - Round 3

The leader waits to receive the signatures for a specific

timeframe. If it does not receive at least 2

3
· n + 1 signatures

in that timeframe, the consensus round is aborted. But if the

leader does receive 2

3
· n+ 1 or more valid signatures, it uses

them to generate the aggregated signature:

SigAgg =
∑

i

H1(Pki) · Sigi ·B[i] (5)

where SigAgg is a point on g0.

The leader then adds the aggregated signature to the block

together with the selected signers bitmap B, where a 1
indicates that the corresponding signer in the list L had its

signature added to the aggregated signature SigAgg.
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Practical verification

Given the list of public keys L, the bitmap for the signers B,

the aggregated signature SigAgg, and a message m (block),

the verifier computes the aggregated public key:

PkAgg =
∑

i

H1(Pki) · Pki ·Bi (6)

The result, PkAgg, is a point on g1. The final verification is

e(G1, SigAgg) == e(PkAgg,H0(m)) (7)

where e is the pairing function.

VII Cross-shard Execution

For an in depth example of how the cross-shard transactions

are being executed and how the communication between

shards and the metachain occurs, we are simplifying the entire

process to just two shards and the metachain. Assuming that

a user generates a transaction from his wallet, which has an

address in shard 0 and wants to send EGLD to another user that

has a wallet with an address in shard 1, the steps depicted in

Fig. 4 are required for processing the cross-shard transaction.

As mentioned in chapter V - Consensus via Secure Proof of

Stake, the blocks structure is represented by a block Header

that contains information about the block (block nonce, round,

proposer, validators timestamp etc), and a list of miniblocks

for each shard that contain the actual transactions inside. Every

miniblock contains all transactions that have either the sender

in the current shard and the receiver in another shard or the

sender in a different shard and the destination in the current

shard. In our case, for a block in shard 0, there will normally

be 3 miniblocks:

• miniblock 0: containing the intrashard transactions for

shard 0

• miniblock 1: containing cross-shard transactions with the

sender in shard 0 and destination in shard 1
• miniblock 2: containing cross-shard transactions with

sender in shard 1 and destination in shard 0. These

transactions were already processed in the sender shard

1 and will be finalized after the processing also in the

current shard.

There is no limitation on the number of miniblocks with

the same sender and receiver in one block. Meaning multiple

miniblocks with the same sender and receiver can appear in

the same block.

1 Processing

Currently the atomic unit of processing in cross-shard

execution is a miniblock: either all the transactions of the

miniblock are processed at once or none and the miniblock’s

execution will be retried in the next round.

Our cross-shard transaction strategy uses an asynchronous

model. Validation and processing is done first in sender’s shard

and then in receivers’ shard. Transactions are first dispatched

in the sender’s shard, as it can fully validate any transaction

initiated from the account in this shard – mainly the current

balance. Afterwards, in the receivers’ shard, the nodes only

need proof of execution offered by metachain, do signature

verification and check for replay attack and finally update

the balance for the receiver, adding the amount from the

transaction.

Shard 0 processes both intra-shard transactions in miniblock

0 and a set of cross-shard transactions that have addresses from

shard 1 as a receiver in miniblock 1. The block header and

miniblocks are sent to the metachain. The metachain notarizes

the block from shard 0, by creating a new metachain block

(metablock) that contains the following information about each

miniblock: sender shard ID, receiver shard ID, miniblock hash.

Fig. 4: Cross-shard transaction processing
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Shard 1 fetches the hash of miniblock 1 from metablock,

requests the miniblock from shard 0, parses the transaction

list, requests missing transactions (if any), executes the same

miniblock 1 in shard 1 and sends to the metachain resulting

block. After notarization the cross transaction set can be

considered finalized.

The next diagram shows the number of rounds required for a

transaction to be finalized. The rounds are considered between

the first inclusion in a miniblock until the last miniblock is

notarised.

VIII Smart Contracts

The execution of smart contracts is a key element in all

future blockchain architectures. Most of the existing solutions

avoid to properly explain the transactions and data dependency.

This context leads to the following two scenarios:

1) When there is no direct correlation between smart con-

tract transactions, as displayed in Fig. 5, any architecture

can use out of order scheduling. This means there are

no additional constraints on the time and place (shard)

where a smart contract is executed.

2) The second scenario refers to the parallelism induced by

the transactions that involve correlated smart contracts

[37]. This case, reflected in Fig. 6, adds additional

pressure on the performance and considerably increases

the complexity. Basically there must be a mechanism

to ensure that contracts are executed in the right order

and on the right place (shard). To cover this aspect,

MultiversX protocol proposes a solution that assigns and

moves the smart contract to the same shard where their

static dependencies reside. This way most, if not all SC

calls will have dependencies in the same shard and no

cross-shard locking/unlocking will be needed.

MultiversX focuses on the implementation of the Multi-

versX Virtual Machine, an EVM compliant engine. The EVM

Fig. 5: Independent transaction processing under simple

smart contracts that can be executed out of order

Fig. 6: Mechanism for correlated smart contracts that can be

executed only sequentially

Fig. 7: Abstraction Layer for Smart Contracts

compliance is extremely important for adoption purposes, due

to the large number of smart contracts built on Ethereum’s

platform.

The MultiversX Virtual Machine’s implementation will hide

the underlying architecture isolating the smart contract de-

velopers from system internals ensuring a proper abstraction

layer, as displayed in Fig. 7.

In MultiversX, cross chain interoperability can be imple-

mented by using an adapter mechanism at the Virtual Machine

level as proposed by Cosmos [38]. This approach requires spe-

cialized adapters and an external medium for communication

between adapter SC for each chain that will interoperate with

MultiversX. The value exchange will be operated using some

specialized smart contracts acting as asset custodians, capable

of taking custody of adapted chain native tokens and issuing

MultiversX native tokens.

1 VM Infrastructure

MultiversX builds its VM infrastructure on top of the K

Framework, which is an executable semantic framework where

programming languages, calculi, as well as type systems or

formal analysis tools can be defined [39].

The greatest advantage of using the K framework is that

with it, smart contract languages can be unambiguously de-

fined, eliminating the potential for unspecified behavior and

bugs that are hard to detect.

The K Framework is executable, in the sense that the seman-

tic specifications of languages can be directly used as working

interpreters for the languages in question. More specifically,

one can either run programs against the specifications using

the K Framework core implementation directly, or one can

generate an interpreter in several programming languages.

These are also referred to as ”backends”. For the sake of

execution speed and ease of interoperability, MultiversX uses

its own custom-built K Framework backend.

2 Smart contract languages

One great advantage of the K Framework is that one can

generate an interpreter for any language defined in K, without

the need for additional programming. This also means that
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interpreters produced this way are ”correct-by-construction”.

There are several smart contract languages specified in the

K Framework already, or with their specifications under de-

velopment. MultiversX Network will support three low-level

languages: IELE VM, KEVM, and WASM.

• IELE VM is an intermediate-level language, in the style

of LLVM, but adapted for the blockchain. It was built

directly in K, no other specification or implementation of

it exists outside of the K framework [40]. Its purpose is

to be human readable, fast, and to overcome some limita-

tions of EVM. MultiversX uses a slightly altered version

of IELE - most changes are related to account address

management. Smart contract developers can program in

IELE directly, but most will choose to code in Solidity

and then use a Solidity to IELE compiler, as can be seen

in Fig. 8.

• KEVM is a version of the Ethereum Virtual Machine

(EVM), written in K [41]. Certain vulnerabilities of EVM

are fixed in the K version, or the vulnerable features are

left out entirely.

• Web Assembly (WASM) is a binary instruction format

for a stack-based virtual machine, which can be used for

running smart contracts. A WASM infrastructure enables

developers to write smart contracts in C/C++, Rust, C#,

and others.

Having a language specification and generating the inter-

preter is only half of the challenge. The other half is integrating

the generated interpreter with the MultiversX network. We

have built a common VM interface, that enables us to plug

in any VM into an MultiversX node as shown in Fig. 9. Each

VM then has an adapter that implements this interface. Each

contract is saved as bytecode of the VM for which it was

compiled and runs on its corresponding VM.

3 Support for formal modelling and verification

Because the smart contract languages are formally defined

in K Framework, it is possible to perform formal verification

of smart contracts written in these languages. To do this, it

Fig. 8: MultiversX VM execution

Fig. 9: MultiversX VM components

is necessary to also formally model their requirements, which

can also be performed using the K Framework [42].

4 Smart contracts on the sharded architecture

Smart contracts on sharded architectures are still in the

early stages of research and development and pose serious

challenges. Protocols like Atomix [7] or S-BAC [9] represent

a starting point. Dynamic smart contract dependencies cannot

be resolved by moving the SCs into the same shard, as at

deployment time, not all the dependencies can be calculated.

Solution currently research in the space:

1) A locking mechanism that allows the atomic execution

of smart contract from different shards, ensures that the

involved SCs will be either all executed at the same

time, or none at all. This requires multiple interaction

messages and synchronization between consensuses of

different shards. [9]

2) Cross-shard contract yanking proposal for Ethereum 2.0

would move that smart contract code and data into the

caller shard at the execution time. Atomic execution is

not needed, but the locking mechanism is mandatory

on the moved SC, which would block the execution

of SC for other transactions. The locking mechanism

is simpler, but it needs to transfer the whole internal

state of the SC. [43]

Following Ethereum’s model, MultiversX has the following

transaction types:

1) SC construction and deployment: transactions receiver

address is empty and data field contains the smart

contract code as byte array;

2) SC method invoking: transaction has a non empty re-

ceiver address and that address has an associated code;

3) Payment transactions: transaction has a non empty re-

ceiver and that address does not have code.

MultiversX’ approach to this problem is to use asyn-

chronous cross-shard execution model in case of smart con-

tracts. The user creates a smart contract execution transaction.

If the smart contract is not in the current shard, the transaction

is treated as a payment transaction, the value of the transaction

is subtracted from the sender account and it is added to

the block where the sender shard resides, into a miniblock

with the destination shard where the receiver account is. The

transaction is notarized by metachain, then processed by the

destination shard. In the destination shard, the transaction is

treated as SC method invoking, as the receiver address is

a smart contract which exists in this shard. For the smart

contract call a temporary account which shadows the sender
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account is created, with the balance from the transaction value

and the smart contract is called. After the execution, the

smart contract might return results which affects a number

of accounts from different shards. All the results, which affect

in-shard accounts are executed in the same round. For those

accounts which are not in the shard where the smart contract

was executed, transactions called Smart Contract Results will

be created, saving the smart contract execution output for

each of these accounts. SCR miniblocks are created for each

destination shard. These miniblocks are notarized the same

way as cross-shard transactions by metachain, then processed

by the respective shards, where the accounts resides. In case

one smart contract calls dynamically another smart contract

from another shard, this call is saved as an intermediate result

and treated the same as for accounts.

The solution has multiple steps and the finalization of a

cross-shard smart contract call will need at least 5 rounds, but

it does not need locking and state movement across shards.

IX Bootstrapping and Storage

1 Timeline division

Proof of Stake systems tend to generally divide timeline into

epochs and each epoch into smaller rounds [19]. The timeline

and terminology may differ between architectures but most of

them use a similar approach.

Epochs

In MultiversX Protocol, each epoch has a fixed duration,

initially set to 24 hours (might suffer updates after sev-

eral testnet confirmation stages). During this timeframe, the

configuration of the shards remains unchanged. The system

adapts to scalability demands between epochs by modifying

the number of shards. To prevent collusion, after an epoch, the

configuration of each shard needs to change. While reshuffling

all nodes between shards would provide the highest security

level, it would affect the system’s liveness by introducing

additional latency due to bootstrapping. For this reason, at

the end of each epoch, less than 1

3
of the eligible validators,

belonging to a shard will be redistributed non-deterministically

and uniformly to the other shards’ waiting lists.

Only prior to the start of a new epoch, the validator

distribution to shards can be determined, without additional

communication as displayed in Fig. 10.

The node shuffling process runs in multiple steps:

1) The new nodes registered in the current epoch ei land

in the unassigned node pool until the end of the current

epoch;

2) Less than 1

3
of the nodes in every shard are randomly

selected to be reshuffled and are added to the assigned

node pool;

3) The new number of shards Nsh,i+1 is computed based

on the number of nodes in the network ki and network

usage;

4) Nodes previously in all shard’s waiting lists, that are cur-

rently synchronized, are added to the eligible validator’s

lists;

5) The newly added nodes from the unassigned node pool

are uniformly random distributed across all shards’

waiting lists during epoch ei+1;

6) The reshuffled nodes from the assigned node pool are

redistributed with higher ratios to shards’ waiting lists

that will need to split in the next epoch ei+2.

Rounds

Each round has a fixed time duration of 5 seconds (might

suffer updates after several testnet confirmation stages). During

each round, a new block can be produced within every shard

by a randomly selected set of block validators (including one

block proposer). From one round to another the set is changed

using the eligible nodes list, as detailed in the chapter IV.

As described before, the reconfiguration of shards within

epochs and the arbitrary selection of validators within rounds

discourages the creation of unfair coalitions, diminishes the

possibility of DDoS and bribery attacks while maintaining

decentralization and a high transactions throughput.

2 Pruning

A high throughput will lead to a distributed ledger

that rapidly grows in size and increases bootstrapping cost

(time+storage), as highlighted in section XI.1.

This cost can be addressed by using efficient pruning

algorithms, that can summarize the blockchain’s full state in a

more condensed structure. The pruning mechanism is similar

to the stable checkpoints in pBFT [15] and compresses the

entire ledger state.

MultiversX protocol makes use of an efficient pruning

algorithm [7] detailed below. Let us consider that e is the

current epoch and a is the current shard:

1) the shard nodes keep track of the account balances of e

in a Merkle tree [44];

2) at the end of each epoch, the block proposer creates a

state block sb(a, e), which stores the hash of the Merkle

tree’s root in the block’s header and the balances in the

block’s body;

3) validators verify and run consensus on sb(a, e);
4) if consensus is reached, the block proposer will store

sb(a, e) in the shard’s ledger, making it the genesis block

for epoch e+ 1;

5) at the end of epoch e+ 1, nodes will drop the body of

sb(a, e) and all blocks preceding sb(a, e).

Using this mechanism, the bootstrapping of the new nodes

should be very efficient. Actually, they start only from the

last valid state block and compute only the following blocks

instead of its full history.

X Security Evaluation

1 Randomness source

MultiversX makes use of random numbers in its opera-

tion e.g. for the random sampling of block proposer and

validators into consensus groups and the shuffling of nodes

between shards at the end of an epoch. Because these features

contribute to MultiversX’ security guarantees, it is therefore
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Fig. 10: Shuffling the nodes at the end of each epoch

important to make use of random numbers that are provably

unbiasable and unpredictable. In addition to these properties,

the generation of random numbers also needs to be efficient so

that it can be used in a scalable and high throughput blockchain

architecture.

These properties can be found in some asymmetric cryptog-

raphy schemes, like the BLS signing scheme. One important

property of BLS is that using the same private key to sign

the same message always produces the same results. This is

similar to what is achieved using ECDSA with deterministic

k generation and is due to the scheme not using any random

parameters:

sig = sk ·H(m) (8)

where H is a hashing function that hashes to points on the

used curve and sk is the private key.

2 Randomness creation in MultiversX

One random number is created in every round, and added

by the block proposer to every block in the blockchain. This

ensures that the random numbers are unpredictable, as each

random number is the signature of a different block proposer

over the previous randomness source. The creation of random

numbers is detailed below as part of one consensus round:

1) New consensus group is selected using the randomness

source from the previous block header. Consensus group

is formed by a block proposer and validators.

2) The block proposer signs the previous randomness

source with BLS, adds the signature to the proposed

block header as new randomness source, then broadcasts

this block to the consensus group.

3) Each member of the consensus group validates the

randomness source as part of block validation, and sends

their block signature to the block proposer.

4) Block proposer aggregates the validators block signa-

tures and broadcasts the block with the aggregated block

signature and the new randomness source to the whole

shard.

The evolution of randomness source in each round can be

seen as an unbiasable and verifiable blockchain, where each

new random number can be linked to and verified against the

previous random number.

3 ”K” block finality scheme

The signed block at round n is final, if and only if blocks

n+ 1, n+ 2, ..., n+ k are signed. Furthermore, a final block

cannot be reverted. The metachain notarizes only final blocks

to ensure that a fork in one shard does not affect other shards.

Shards only take into consideration the final metachain blocks,

in order to not be affected if the metachain forks. Finality and

correctness is verified at block creation and at block validation
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as well. The chosen k parameter is 1 and this ensures forks

of maximum 2 blocks length. The probability that a malicious

super majority (> 2

3
· n + 1) is selected in the shard for the

same round in the same consensus is 10−9, even if 33% of

the nodes from the shard are malicious. In that case they can

propose a block and sign it - let’s call it block m, but it will

not be notarized by the metachain. The metachain notarizes

block m, only if block m+1 is built on top of it. In order to

create block m+1 the next consensus group has to agree with

block m. Only a malicious group will agree with block m, so

the next group must have a malicious super majority again.

As the random seed for group selection cannot be tampered

with, the probability of selecting one more malicious super

majority group is 10−9 (5.38 · 10−10, to be exact). The

probability of signing two consecutive malicious blocks equals

with selecting two subgroups with at least ( 2
3
·n+1) members

from the malicious group consequently. The probability for

this is 10−18. Furthermore, the consequently selected groups

must be colluding, otherwise the blocks will not be signed.

4 Fisherman challenge

When one invalid block is proposed by a malicious majority,

the shard state root is tampered with an invalid result (after

including invalid changes to the state tree). By providing the

combined merkle proof for a number of accounts, an honest

node could raise a challenge with a proof. The honest nodes

will provide the block of transactions, the previous reduced

merkle tree with all affected accounts before applying the

challenged block and the smart contract states, thus demon-

strating the invalid transaction / state. If a challenge with the

proof is not provided in the bounded time frame, the block

is considered valid. The cost of one invalid challenge is the

entire stake of the node which raised the challenge.

The metachain detects the inconsistency, either an invalid

transaction, or an invalid state root, through the presented

challenges and proofs. This can be traced and the consensus

group can be slashed. At the same time the challenger can be

rewarded with part of the slashed amount. Another problem

is when a malicious group hides the invalid block from other

nodes - non-malicious ones. However, by making it mandatory

for the current consensus to propagate the produced block to

the sibling shard and to the observer nodes, the data cannot

be hidden anymore. The communication overhead is further

reduced by sending only the intrashard miniblock to the sibling

shard. The cross shard miniblocks are always sent on different

topics accessible by interested nodes. In the end, challenges

can be raised by multiple honest nodes. Another security pro-

tection is given by the setup of P2P topics. The communication

from one shard toward the metachain is done through a defined

set of topics / channels, which can be listened to by any

honest validator - the metachain will not accept any other

messages from other channels. This solution introduces some

delay in the metachain only in case of challenges, which are

very low in number and highly improbable since if detected

(high probability of being detected) the nodes risk their entire

stake.

5 Shard reorganization

After each epoch, less than 1

3
· n of the nodes from each

shard are redistributed uniformly and non-deterministically

across the other shards, to prevent collusion. This method adds

bootstrapping overhead for the nodes that were redistributed,

but doesn’t affect liveness as shuffled nodes do not participate

in the consensus in the epoch they have been redistributed.

The pruning mechanism will decrease this time to a feasible

amount, as explained in section IX.2.

6 Consensus group selection

After each round a new set of validators are selected using

the random seed of the last commited block, current round and

the eligible nodes list. In case of network desynchronization

due to the delays in message propagation, the protocol has

a recovery mechanism, and takes into consideration both the

round r and the randomness seed from the last committed

block in order to select new consensus groups every round.

This avoids forking and allows synchronization on last block.

The small time window (round time) in which the validators

group is known, minimizes the attack vectors.

7 Node rating

Beside stake, the eligible validator’s rating influences the

chances to be selected as part of the consensus group. If the

block proposer is honest and its block gets committed to the

blockchain, it will have its rating increased, otherwise, it’s

rating will be decreased. This way, each possible validator

is incentivized to be honest, run the most up-to-date client

software version, increase its service availability and thus

ensuring the network functions as designed.

8 Shard redundancy

The nodes that were distributed in sibling shards on the

tree’s lowest level (see section IV.4) keep track of each other’s

blockchain data and application state. By introducing the

concept of shard redundancy, when the number of nodes in

the network decreases, some of the sibling shards will need

to be merged. The targeted nodes will instantly initiate the

process of shard merging.

XI Understanding the real problems

1 Centralized vs Decentralized

Blockchain was initially instantiated as an alternative to

the centralized financial system of systems [45]. Even if the

freedom and anonymity of distributed architectures remains an

undisputed advantage, the performance has to be analyzed at

a global scale in a real-world environment.

The most relevant metric measuring performance is transac-

tions per second (TPS), as seen in Table 2. A TPS comparison

of traditional centralized systems with decentralized novel

architectures that were validated as trusted and efficient on

a large scale, reflects an objective yet unsettling reality [46],

[47], [48], [49].
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Archi-

tecture
Type Dispersion

TPS

(average)

TPS

(max limit)

VISA
Distributed

virtualization
Centralized 3500 55000

Paypal
Distributed

virtualization
Centralized 200 450

Ripple
Private

Blockchain
Permissioned 1500 55000

NEO
Private

Blockchain
Mixed 1000 10000

Ethereum
Public

Blockchain
Decentralized 15 25

Bitcoin
Public

Blockchain
Decentralized 2 7

TABLE 2: Centralized vs Decentralized TPS comparison

The scalability of blockchain architectures is a critical

but still unsolved problem. Take, for instance, the example

determining the data storage and bootstrapping implications of

current blockchain architectures suddenly functioning at Visa

level throughput. By performing such exercises, the magnitude

of multiple secondary problems becomes obvious (see Fig.

11).

XII The blockchain performance paradigm

The process of designing distributed architectures on

blockchain faces several challenges, perhaps one of the most

challenging being the struggle to maintain operability under

contextual pressure conditions. The main components that

determine the performance pressure are:

• complexity

• system size

• transaction volume

Complexity

The first element that limits the system performance, is the

consensus protocol. A more complicated protocol determines

a bigger hotspot. In PoW consensus architectures a big perfor-

mance penalty is induced by the mining complexity that aims

to keep the system decentralized and ASIC resilient [50]. To

overrun this problem PoS makes a trade-off, simplifies the

network management by concentrating the computing power

to a subset of the network, but yields more complexity on the

control mechanism.

System size

Expanding the number of nodes in existing validated archi-

tectures forces a serious performance degradation and induces

a higher computational price that must be paid. Sharding

seems to be a good approach, but the shard size plays a

major role. Smaller shards are agile but more likely to be

affected by malicious groups, bigger shards are safer, but their

reconfiguration affects the system liveness.

Transaction volume

With a higher relevance compared to the others, the last item

on the list represents the transaction processing performance.

In order to correctly measure the impact of this criteria, this

must be analyzed considering the following two standpoints:

• C1 transaction throughput - how many transactions a

system can process per time unit, known as TPS, an

output of a system [51];

• C2 transaction finality - how fast one particular trans-

action is processed, referring to the interval between its

launch and its finalization - an input to output path.

C1. T ransaction throughput in single chain architectures is

very low and can be increased by using workarounds such

as sidechain [52]. In a sharded architecture like ours, the

transaction throughput is influenced by the number of shards,

the computing capabilities of the validators/block proposers

and the messaging infrastructure [8]. In general, as displayed

in Fig. 13, this goes well to the public, but despite the

importance of the metric, it provides only a fragmented view.

Fig. 11: Storage Estimation - Validated distributed architectures working at an average of VISA TPS
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Fig. 13: Transaction throughput

C2. T ransaction finality - A more delicate aspect that

emphasizes that even if the system may have a throughput of

1000 TPS, it may take a while to process a particular transac-

tion. Beside the computing capabilities of the validators/block

proposers and the messaging infrastructure, the transaction

finality is mainly affected by the dispatching algorithm (when

the decision is made) and the routing protocol (where should

the transaction be executed). Most of the existing state of the

art architectures refuse to mention this aspect but from a user

standpoint this is extremely important. This is displayed in

Fig. 14, where the total time required to execute a certain

transaction from start to end is considered.

In MultiversX, the dispatching mechanism (detailed in sec-

tion V) allows an improved time to finality by routing the

transactions directly to the right shard, mitigating the overall

delays.

XIII Conclusion

1 Performance

Performance tests and simulations, presented in Fig. 12,

reflect the efficiency of the solution as a highly scalable

Fig. 14: Transaction finality

distributed ledger. As more and more nodes join the network

our sharding approach shows a linearly increasing throughput.

The chosen consensus model involves multiple communication

rounds, thus the result is highly influenced by the network

quality (speed, latency, availability). Simulations using our

testnet using worldwide network speed averages, at its maxi-

mum theoretical limit, suggest MultiversX exceeds the average

VISA level with just 2 shards, and approaches peak VISA level

with 16 shards.

2 Ongoing and future research

Our team is constantly re-evaluating and improving Mul-

tiversX’ design, in an effort to make this one of the most

compelling public blockchain architectures; solving scalability

via adaptive state sharding, while maintaining security and

high energy efficiency through a secure Proof of Stake consen-

sus mechanism. Some of our next directions of improvement

include:

1) Reinforcement learning: we aim to increase the ef-

ficiency of the sharding process by allocating the fre-

Fig. 12: Network throughput measured in transactions per seconds with a global network speed of 8 MB/s
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quently trading clients in the same shard to reduce the

overall cost;

2) AI supervision: create an AI supervisor that detects

malicious behavioral patterns; it is still uncertain how

this feature can be integrated in the protocol without

disrupting the decentralization;

3) Reliability as a consensus factor: the existing protocol

weighs between stake and rating but we plan to add

reliability, as a metric that should be computed in a

distributed manner after applying a consensus protocol

on previously submitted blocks from the very recent

history;

4) Cross-chain interoperability: implements and con-

tribute to standards like those initiated by the De-

centralized Identity Foundation [53] or the Blockchain

Interoperability Alliance [54];

5) Privacy preserving transactions: use Zero-Knowledge

Succinct Non-Interactive Argument of Knowledge [55]

to protect the identity of the participants and offer

auditing capabilities while preserving the privacy.

3 Overall Conclusions

MultiversX is the first highly scalable public blockchain that

uses the newly proposed Secure Proof of Stake algorithm in

a genuine state-sharded architecture to achieve VISA level

throughput and confirmation times of seconds. MultiversX’

novel approach on adaptive state sharding improves on Om-

niledger’s proposal increasing security and throughput, while

the built-in automatic transaction routing and state redundancy

mechanisms considerably reduce latencies. By using a shard

pruning technique the bootstrapping and storage costs are

also considerably reduced compared to other approaches. The

newly introduced Secure Proof of Stake consensus algorithm

ensures distributed fairness and improves on Algorand’s idea

of random selection, reducing the time needed for the random

selection of the consensus group from 12 seconds to 100

ms. Our method of combining state sharding and the very

efficient Secure Proof of Stake consensus algorithm has shown

promising results in our initial estimations, validated by our

latest testnet results.
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[39] G. Ros, u and T. F. S, erbănută, “An overview of the k semantic frame-
work,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 397–434, 2010.

[40] T. Kasampalis, D. Guth, B. Moore, T. Serbanuta, V. Serbanuta, D. Fi-
laretti, G. Rosu, and R. Johnson, “Iele: An intermediate-level blockchain
language designed and implemented using formal semantics,” Tech.
Rep., 2018.

[41] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, “Kevm: A complete semantics of the ethereum virtual
machine,” Tech. Rep., 2017.

[42] “How Formal Verification of Smart Contracts Works |
RV Blog.” [Online]. Available: https://runtimeverification.com/blog/
how-formal-verification-of-smart-contracts-works/

[43] “Cross-shard contract yanking.” [Online]. Available: https://ethresear.
ch/t/cross-shard-contract-yanking/1450

[44] R. C. Merkle, “A Certified Digital Signature,” in Advances in Cryptology

— CRYPTO’ 89 Proceedings, ser. Lecture Notes in Computer Science.
Springer, New York, NY, Aug. 1989, pp. 218–238. [Online]. Available:
https://link.springer.com/chapter/10.1007/0-387-34805-0 21

[45] A. Veysov and M. Stolbov, “Financial System Classification: From
Conventional Dichotomy to a More Modern View,” Social Science
Research Network, Rochester, NY, SSRN Scholarly Paper ID 2114842,
Jul. 2012. [Online]. Available: https://papers.ssrn.com/abstract=2114842

[46] “XRP - The Digital Asset for Payments.” [Online]. Available:
https://ripple.com/xrp/

[47] “Visa - Annual Report 2017,” 2018. [Online]. Avail-
able: https://s1.q4cdn.com/050606653/files/doc financials/annual/2017/
Visa-2017-Annual-Report.pdf

[48] “PayPal Reports Fourth Quarter and Full Year 2017 Results
(NASDAQ:PYPL),” 2018. [Online]. Available: https://investor.
paypal-corp.com/releasedetail.cfm?releaseid=1055924

[49] M. Schwarz, “Crypto Transaction Speeds 2018 - All the Major
Cryptocurrencies,” 2018. [Online]. Available: https://www.abitgreedy.
com/transaction-speed/

[50] “The Ethereum Wiki - Mining,” 2018, original-date: 2014-02-
14T23:05:17Z. [Online]. Available: https://github.com/ethereum/wiki/
wiki/Mininghttps://github.com/ethereum/wiki

[51] “Transaction throughput.” [Online]. Available: https://docs.oracle.com/
cd/E17276 01/html/programmer reference/transapp throughput.html

[52] W. Martino, M. Quaintance, and S. Popejoy, “Chainweb: A Proof-
of-Work Parallel-Chain Architecture for Massive Throughput,” 2018.
[Online]. Available: http://kadena.io/docs/chainweb-v15.pd

[53] “DIF - Decentralized Identity Foundation.” [Online]. Available:
http://identity.foundation/

[54] H. I. World, “Blockchain Interoperability Alliance:
ICON x Aion x Wanchain,” Dec. 2017.
[Online]. Available: https://medium.com/helloiconworld/
blockchain-interoperability-alliance-icon-x-aion-x-wanchain-8aeaafb3ebdd

[55] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-systems,” in Proceedings of the Seventeenth Annual

ACM Symposium on Theory of Computing, ser. STOC ’85. New
York, NY, USA: ACM, 1985, pp. 291–304. [Online]. Available:
http://doi.acm.org/10.1145/22145.22178

https://link.springer.com/chapter/10.1007/978-3-642-29011-4_33
http://doi.acm.org/10.1145/501983.502017
https://link.springer.com/chapter/10.1007/978-3-540-72540-4_13
https://link.springer.com/chapter/10.1007/978-3-540-72540-4_13
http://doi.acm.org/10.1145/1180405.1180453
https://link.springer.com/chapter/10.1007/978-3-642-03298-1_3
https://link.springer.com/chapter/10.1007/978-3-642-03298-1_3
http://doi.acm.org/10.1145/3087801.3087835
https://cosmos.network/whitepaper
https://runtimeverification.com/blog/how-formal-verification-of-smart-contracts-works/
https://runtimeverification.com/blog/how-formal-verification-of-smart-contracts-works/
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://papers.ssrn.com/abstract=2114842
https://ripple.com/xrp/
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://investor.paypal-corp.com/releasedetail.cfm?releaseid=1055924
https://investor.paypal-corp.com/releasedetail.cfm?releaseid=1055924
https://www.abitgreedy.com/transaction-speed/
https://www.abitgreedy.com/transaction-speed/
https://github.com/ethereum/wiki/wiki/Mininghttps://github.com/ethereum/wiki
https://github.com/ethereum/wiki/wiki/Mininghttps://github.com/ethereum/wiki
https://docs.oracle.com/cd/E17276_01/html/programmer_reference/transapp_throughput.html
https://docs.oracle.com/cd/E17276_01/html/programmer_reference/transapp_throughput.html
http://kadena.io/docs/chainweb-v15.pd
http://identity.foundation/
https://medium.com/helloiconworld/blockchain-interoperability-alliance-icon-x-aion-x-wanchain-8aeaafb3ebdd
https://medium.com/helloiconworld/blockchain-interoperability-alliance-icon-x-aion-x-wanchain-8aeaafb3ebdd
http://doi.acm.org/10.1145/22145.22178

	Introduction
	General aspects
	Defining the challenges
	Adaptive State Sharding
	Secure Proof of Stake (SPoS)

	Architecture Overview
	Entities
	Intrinsic token
	Threat model
	Chronology

	Related Work
	Ethereum
	Omniledger
	Zilliqa
	Algorand
	Chainspace

	Scalability via Adaptive State Sharding
	Why sharding
	Sharding types
	Sharding directions
	MultiversX sharding approach
	Notarization (Meta) chain

	Consensus via Secure Proof of Stake
	Consensus Analysis
	Secure Proof of Stake (SPoS)

	Cryptographic Layer
	Signature Analysis
	Block signing in MultiversX

	Cross-shard Execution
	Processing

	Smart Contracts
	VM Infrastructure
	Smart contract languages
	Support for formal modelling and verification
	Smart contracts on the sharded architecture

	Bootstrapping and Storage
	Timeline division
	Pruning

	Security Evaluation
	Randomness source
	Randomness creation in MultiversX
	"K" block finality scheme
	Fisherman challenge
	Shard reorganization
	Consensus group selection
	Node rating
	Shard redundancy

	Understanding the real problems
	Centralized vs Decentralized

	The blockchain performance paradigm
	Conclusion
	Performance
	Ongoing and future research
	Overall Conclusions

	References

